
23

FIGURES

Figures 1 through 3: Train using unmodified BP on training set t, and feed input x into
the resultant net. The horizontal axis givesthe output you get. If t and x were still used
but training had been with modified BP, the output would have been the value on the
vertical axis. In succession, the three figures haveα = .6, .4, .4, and m = 1, 4, 1.

Figure 3. Figure 4: The horizontal axis is|wi|. The top
curve depicts the weight decay regularizer,
αwi

2, and the bottom curve shows that regu-
larizer modified by the correction term.α = .2.

22

Acknowledgements

Thanks to David Rosen and Wray Buntine for stimulating discussion, and to TXN Inc. and the SFI for funding.

References

Berger, J. (1985).Statistical Decision Theory and Bayesian Analysis. Springer-Verlag.

Bridle, J. (1989). Probabilistic interpretation of feedforward classification network outputs, with relationships to sta-
tistical pattern recognition. In F. Fougelman-Soulie and J. Herault (Eds.),Neuro-computing: Algorithms, architec-
tures, and applications. Springer-Verlag.

Buntine, W., Weigend, A. (1991). Bayesian back-propagation.Complex Systems, 5, p. 603.

Denker, J., LeCun, Y. (1991). Transforming neural-net output levels to probability distributions. InNeural Informa-
tion Processing Systems 3, R. Lippman et al. (Eds).

Fefferman, C. (1993). Reconstructing a neural net from its output. Sarnoff Research Center TR 93-01.

Hassibi, B., and Stork, D. (1992). Second order derivatives for network pruning: optimal brain surgeon. Ricoh Tech
Report CRC-TR-9214.

MacKay, D. (1992). Bayesian Interpolation,and A Practical Framework for Backpropagation Networks.Neural
Computation, 4, pp. 415 and 448.

Neal, R. (1993). Bayesian learning via stochastic dynamics. InNeural Information Processing Systems 5, S. Hanson
et al. (Eds). Morgan Kaufmann.

Nowlan, S., and Hinton, G. (1994). Simplifying Neural Networks by Soft Weight-Sharing. InTheories of Induction:
Proceedings of the SFI/CNLS Workshop on Formal Approaches to Supervised Learning, D. Wolpert (Ed.). Addison-
Wesley, to appear.

Rissanen, J. (1986). Stochastic complexity and modeling.Ann. Stat., 14, p. 1080.

Rosen, D. (1994). Scoring the forecaster by mean resulting payoff of a distribution of decision problems.To appear in
Maximum entropy and Bayesian methods, G. Heidbreder (Ed.), Kluwer.

Titterington, D., et al. (1985). Statistical analysis of finite mixture distributions. Wiley.

Weigend et al., (1992). Predicting susnspots and exchange rates with connectionist networks. InNonlinear modeling
and forecasting, M. Casdagli and S. Eubank (Eds.), Addison-Wesley.

Wolpert, D., (1992). On the connection between in-sampling testing and generalization error.Complex Systems, 6, p.
47.

Wolpert, D. (1993). On the use of evidence in neural networks. InNeural Information Processing Systems 5, S. Hanson
et al. (Eds). Morgan-Kauffman.

Wolpert, D. (1994). Filter likelihoods and exhaustive learning. To appear inCompuational Learning Theory and Nat-
ural Learning Systems: Volume II Natural Learning Systems, S. Hanson et al. (Ed.’s). MIT Press.

Wolpert, D., Strauss, C. (1994). What Bayes has to say about the evidence procedure. To appear inMaximum entropy
and Bayesian methods, G. Heidbreder (Ed.), Kluwer.

21

the Hessian ofM'(w, t) = ln[pΦ|T(net(w, .) | t)] with respect toφ at any pointw.

When |W| ≠ |X| |O| things are a bit more complicated. If |W| > |X| |O|, the probability den-
sity at a particularφ is determined by the density at a set ofw’s that extends globally inW,
beyond infinitesimal neighborhoods of any particularw'. Accordingly, local characteris-
tics of the density overΦ (e.g., the Hessian of ln[pΦ|T(φ | t)] with respect toφ) correspond
to global characteristics inW, and such local characteristics of the density overΦ can not
be expressed in terms of properties of a single point inW. In other words, one has no
choice but to (try to) perform the required integration overw (see section (4) of the text),
and then take partial derivatives with respect toφ.

If |W| < |X| |O| things aren’t so bad; we can use the analysis of the case where |W| = |X| |O|,
if we first perform a rotation ofΦ. More precisely: Let the point at which we wish to know
the Hessian beφ' ≡ net(w', .). Calculate the |W| Φ-space vectors∂φ / ∂wi, one vector for
each i∈ {1, 2, ..., |W|}. These vectors give the tangent plane to S(W) (see section (4) of
the text) atφ'. Now rotateΦ so that the first |W| of the coordinates ofΦ are parallel to this
tangent plane. Refer to this rotated version ofΦ asΦR. Note that probability densities over
ΦR equal densities overΦ (up to a rotation), since the determinant of a rotation matrix
equals 1 (and therefore the “correction term” for such a rotation equals 1). Refer to the
space of those first |W| coordinates ofΦR asΦ'R. Note that |Φ'R| = |W| < |Φ|.

Having performed the rotation, we can examine the Hessian with respect toΦ'R (i.e., with
respect to coordinates[ΦR] i ≤ |W|) rather than the Hessian with respect toΦ. To do this
simply perform the same calculation as at the beginning of this appendix, withΦ'R substi-
tuted forΦ throughout, and in particular substituted forΦ in the derivatives with respect
to w. (Note that partial derivatives with respect to [ΦR] i > |W| are all infinite, since our den-
sity equal zero off of S(W).)

20

Appendix Four: Calculating the Hessian in φ-space.

This appendix presents a cursory overview of one way to calculate the Hessian inΦ of
ln[pΦ|T(φ | t)], i.e., of how to calculate the Hessian ofM'(w, t) with respect toφ (see the
end of section 4). To start restrict attention to a subregion ofW and a subregion ofΦ such
that net(w, .) is one-to-one and onto over those subregions. This means in particular that
|W| = |X| |O|.

Write ∂ / ∂φi = Σj [∂wj / ∂φi] ∂ / ∂wj. The difficulty with this expression is that we can’t
directly write down∂wj / ∂φi, only ∂φi / ∂wj. However these two matrices are inverses of
each other whether both are considered functions ofφ or both are considered functions of
w. (This is because for any fixed i and j,Σk [∂φi / ∂wk × ∂wk / ∂φj] = δ(i, j), so long as the
partial derivatives are all evaluated at the same point.) So for any function A(.) we have

(∂ / ∂φi) A(w(φ)) = Σj {[(∂φ / ∂w)-1] i,j (∂ / ∂wj) A(w)},

where the inverse is understood to be of the whole matrix.

This partial derivative is a new function B(w(φ)). So recursing, we get

(∂2 / ∂φi∂φj) A(w(φ))

= Σk [(∂φ / ∂w)-1] i,k (∂ / ∂wk) B(w)

= Σk [(∂φ / ∂w)-1] i,k (∂ / ∂wk) [Σl {[(∂φ / ∂w)-1] j,l (∂ / ∂wl) A(w)}]

= Σk,l [(∂φ / ∂w)-1] i,k [(∂φ / ∂w)-1] j,l (∂2/ ∂wk∂wl) A(w)

+ Σk,l [(∂φ / ∂w)-1] i,k (∂ / ∂wl) A(w) (∂ / ∂wk) [(∂φ / ∂w)-1] j,l.

Now we plug A(w) = ln[pΦ|T(net(w, .) | t)] = ln[PW|T(w | t)] - ln[||JΦ,W(w)||] into our
two sums. The first sum acting on the first ln(.) will give a linear transformation ofI(w),
whereI(w) is the Hessian ofM(w, t) with respect tow, i.e.,I(w) is the “Hessian” people
usually calculate. (As an aside, note the close relationship between this linear transforma-
tion of I(w) and the expression in equation (12) of (Buntine and Weigend, 1991).) The
first sum acting on the second ln(.) gives the same linear transformation, but of the Hes-
sian of the Jacobian. These linear transformations are straight-forward to evaluate.

For the second sum, we need to evaluate(∂ / ∂wk) [(∂φ / ∂w)-1] j,l. (The other factors are
straight-forward to evaluate.) To do this, for expository simplicity define Cij(w) ≡
∂φi / ∂wj, and Dij(w) ≡ ∂wi / ∂φj = C-1. What we want to know is the gradient with respect
to w of D.

We have (using implied sum convention) Cij Djk = δik for all i, k, and (implicit)w. Taking
the gradient with respect tow, and defining Eij(w) ≡ ∇w Cij(w) and Fij(w) ≡ ∇w Dij(w), we

have 0 = Eij Djk + Cij Fjk for all i, k, and (implicit)w. Multiplying on the left by [C-1] li =
Dli , we get 0 = Dli Eij Djk + Flk. So for all l, k, and (implicit)w, Flk - which is nothing
other than that second term we want to calculate - equals -(Dli Eij Djk).

In this way we can evaluate both sums at any particular pointw, and therefore calculate

19

eral, one wouldn’t expect it to result in a good approximation to the Bayes-optimal answer.

18

In determining the effects of a particular choice of X' one should pay close attention to the
issues discussed below equation (3). In general, since it is equivalent to marginalizing dis-
tributions involving the “full” X, a restriction on X doesn’t introduce new singularities into
the distributions (beyond those associated with the full X). On the other hand, it is possible
that it removes singularities. However in general it won’t remove the singularities dis-
cussed in section (3). For example, even with a restricted X, it’s still true that if the weight
leading out of a hidden neuron is zero one can vary all the weights leading into that neuron
without affectingφ, and therefore you get a singularity.

One natural choice of X' is to have it involve TX, the test set inputs. In such a case the
training set inputs don’t live in the same space as the inputs ofφ’s. So for example one
couldn’t simply write the likelihood as function+noise or some such. Instead it is given by
P(t |φ'x') = ∫dφx∉X' P(t |φ'x', φx) P(φx | φX'), i.e., the restricted likelihood is an integral over
the unrestricted likelihood. (Since we perform our calculations inW, and therefore in par-
ticular have as our likelihood P(t |w), we never explicitly encounter this complication.)

There’s nothing blatantly wrong with having X' only partially overlap with TX however, or
perhaps even not overlap with TX at all. (One could use X' to find a modew, and then use
thatw to guess for all x, including the x in TX.) Ultimately, the question is for what X' is
thew produced by our procedure a better approximation to the Bayes-optimal hx,y for the
elements of TX. In general we can’t perform the calculation to answer this question.
Therefore we must rely on heuristics, just as in choosing between the MAPφ and the
MAP w (see appendix (3)). The heuristics involved in that choice of MAP’s suggest that
X' should overlap with the test set maximally, but by no means prove it.

If we do have X' involve TX but |TX| < |W| / |O|, then we have to choose some extra x’s to
go into X'. In contrast, for both reasons of computational tractability and to try to have our
approximation as accurate as possible, we want |X'| to be as small as possible, and there-
fore we want to leave out elements of TX if |TX| > |W| / |O|. (Under such a scheme, to
make our guess for an x"∈ TX we’ll have X' ⊂ TX, where if we wish we can force things
so that X' always includes x" (this means that X' varies with x").)

Because of this, even if we declare that X' should overlap with TX, we still haven’t fully
specified the elements of X' when |TX| ≠ |W| / |O|. And unfortunately, it isn’t clear how to
complete the specification. For example, if the elements of X' are close together, then we
are coarsely approximating the case where X' consists of a single element, which we
might expect to result in a better approximation to the Bayes-optimal guess. On the other
hand, such an X' might also make the Jacobian ill-behaved. So it’s not clear if the elements
of X' should be close together or far apart. How best to choose X' is an area for future
research.

Finally, note that to get |X| |O| small enough, as an alternative to restricting X one might
restrict O. However this would mean denying the possibility of some outputs. Denying the
possibility of some x’s is fine, if they lie outside of tX and TX, so we know we can’t
encounter them. But denying the possibility of some o’s is far more problematic. In gen-

extra elements. (What changes if one adds new elements are theslices of the distributions
along certain x’s, not the marginalizations.)

17

Appendix Three: How to choose X.

This appendix extends appendix (2), by addressing the issue of what X to use.

One might consider having X be all possible patterns on the neural net’s input neurons.
However for many scenarios the resulting |X| would be huge. (E.g., it’s the number of val-
ues allowed by machine precision for representing real numbers.) This apparently makes
calculating the Jacobian intractable in those scenarios, since it means that |X| |O| is huge
(though it’s possible that there are some tricks which simplify calculation of the Jacobian).
This would appear to make it impossible to apply this paper’s results in those scenarios.

Fortunately though, we don’t need to have X be the set of all possible input patterns. In
fact, often we wouldn’t want X to be all possible inputs even if this presented no calcula-
tional difficulties. This is due to the fact that we’re using modes to approximate means
(see appendix (2)). Usually the lower the dimension of a space the better the mean of a
distribution across that space is approximated by that distribution’s mode. Accordingly, it
makes sense to approximate the vector E(Φ | t)x = [∫dφ φ P(φ | t)]x = ∫dφx φx P(φx | t) by the
mode of P(φx | t) rather than by the x-component of the mode of P(φ | t) (see footnote (7)).

In this alternative procedure, rather than finding the mode of P(φ | t) - a one-time only
operation - and using that to guess outputs for all x’s, instead for each new x one calcu-
lates the mode of P(φx | t). Obviously this procedure could be quite cpu-intensive (though
less so than calculatingE(Φ | t)x for each new x, which is what we’d have to do to find the
exact Bayes-optimal answer). However in practice the issue is mute, since as noted in
footnote (7) we can’t calculateP(φx | t), i.e., we can’t marginalize down to a single x.

Fortunately there is an alternative that i) we can calculate, ii) has tractably small |X|, and
iii) minimizes the need to recalculate distributions with each new x. This alternative is to
marginalize down to a small set of x, X', for which |W| ≤ |X'| |O|. We can perform such a
marginalizationsimply by not considering any x ∉ X'. (In particular, we would not con-
sider such x when calculating the correction term.) This is because for generic
pΦ(φ'x'∈X', φx∉X'), marginalizing out all components ofφ corresponding to x∉ X' gives

the distribution pΦX'
(φ'x'∈X'), i.e., it’s as though our input space were just X' all along.9,10

9 Formally: To marginalize down to X' writepΦX'
(φ'x') = ∫dφx∉X' pΦ(φ'x', φx) =

∫dφ pΦ(φ) δ(φx' - φ'x'). In the usual way this equals∫dw pW(w) δ(net(w, .(X')) - φ'x') (the
delta being a multivariable delta function, and the subscripted dot notation indicating that
we’re viewing the net parameterized byw as a mapping from X' to O rather than from X to
O). Accordingly,pΦX'

(net(w', .(X'))) = ∫dw pW(w) δ(net(w, .(X')) - net(w', .(X'))), and simi-

larly for conditional probabilities. Comparing to equation (1), we see that this is identical
to what we would have gotten had X been restricted to X' from the start. QED.

10 In other words,as far as marginalization is concerned, it doesn’t matter how you define
X (or X'); if you add elements to X, but then marginalize the resultant distributions down
to the original set, you get the same distribution as you would if you’d never added those

16

justification for MAP estimators in (Buntine and Weigend, 1991), for example. (“The pos-
terior probabilities ... represent functions that should be maximized.”) Since the quantity
we directly want to know is (almost always)φ, not w, such reasoning means we should
guess the MAPφ rather than theφ associated with the MAPw. Simply put, it makes intui-
tive sense to guess the most likelyφ given the data, but it’s very hard to come up with any
intuition justifying use of theφ associated with the most likelyw.

5) Phrased differently, loss functions almost always concernφ, not (directly)w. So the
“natural” distribution of interest is P(φ | t), not P(w | t); P(φ | t) is more directly informative
to us than is P(w | t). Therefore if one is going to use MAP estimators, the “natural” one is
the MAPφ, not the MAPw.

6) As an example, note that often we’re interested in quantities like the posterior variance
around the MAP estimate, which tells us how “peaked” the posterior distribution is about
that estimate. Such variances are useful when they concernφ space, but variances inw
space are not nearly so illuminating. So again,φ-space is the space of primary interest.
(Even if we were to use theφ associated with the MAPw, it’s hard to see why we would
be interested in thew-space variance about thatφ rather than theφ-space variance about
it.) Indeed, see (Denker and LeCun, 1991; MacKay, 1992) for examples where people
choose to estimateφ-space variances rather thanw-space variances.

15

ated with) the mode of P(w | t).7 However as demonstrated in the text, in general the MAP
φ doesnot correspond to theφ associated with the MAPw.

So should we try to find the MAPφ or theφ associated with the MAPw? I.e., should we
use BP modified to perform an ascent in P(φ | t), or should we use conventional BP which
instead outputs theφ arising from an ascent of P(w | t)? The proper way to address this
question is to see whichφ gives a better approximation to the Bayes-optimal hx,y. How-
ever such a calculation is daunting. This is especially so when one realizes that the real
question we want to answer is how theφ associated with a randomly chosenlocal peak of
P(w | t) compares with a randomly chosenlocal peak of P(φ | t). (Gradient ascent proce-
dures don’t calculate global peaks in general.) So we have to resort to non-rigorous argu-
ments to choose between the twoφ’s (and for that matter, to justify conventional BP
within the Bayesian decision theory paradigm).

In most of the neural net literature, when language is used which draws a (potential) dis-
tinction between the twoφ’s, the goal is presented as finding the MAPφ. (E.g., (Denker
and LeCun, 1991), (Weigend et al., 1992).) Indeed, most arguments for one or the otherφ
favor the MAPφ:

1) Regularized maximum likelihood techniques like spline fits can be viewed as finding
theφ which best fits the data, subject to a penalty onφ (like its integrated curvature). Such
techniques - which work very well in practice - are akin to finding the MAPφ, with P(φ)
set by the “penalty onφ”. (Note that usually there isn’t even a parameter spaceW for these
techniques - they’re non-parametric.)

2) There are not unreasonable distributions P(c | f, h, t) which say that one should find the
MAP φ exactly. For example, the “catastrophe” P(c | f, h, t) says that any deviation
between h and f will be catastrophic: P(c | f, h, t) =δ(c + δ(h - f)). (A “catastrophe” corre-
sponds to c = 0, no catastrophe to c =−∞.) This means that E(c | h, t) = −∫df P(f | t)δ(h - f),
so that the Bayes-optimal h is the MAP f, argmaxf P(f | t). In example (1), both fx,y and
φx,y are (|X|× |Y|)-dimensional Euclidean vectors, and they’re related by the identity map-

ping. Accordingly, the MAP f is the MAPφ for that example.8

3) Simple utility: if you’re going to use the MAP of a parameter ofφ rather than ofφ
directly, you have to decidewhich parameterization scheme to use (and somehow justify
it). In general, there’s very little rigorous basis for such a decision.

4) One can argue that it makes sense to estimate a quantity as its MAP value simply
because that’s the most likely value of that quantity, given the data. This is the implicit

8 However in example (2) fx,y = e-(φx - y)2 / 2σ2
, and pF[e-(φx - y)2 / 2σ2

] ≠

pΦ[φ]. For this case, to find the MAP f from the MAPφ we must invoke yet another correction term.

In regard to this correction term, note that if K is the number of elements in O, then f∈ Rk|X|. There-
fore f becomes infinite-dimensional as O = Y comes to approximateRN (see footnote (5)), and extra
care must be exercised in the analysis. However generically, when Y does approximateRN the lim-
its on y become infinite, and there’s no way to distinguish values of our second correction term cor-
responding to different values ofφx; the correction term is a constant, independent ofφx. (As an
illustrative example take |X| = N = 1, so the metric gij induced by theΦ → F mapping is a 1 × 1

———1

σ (2π)1/2
———1

σ (2π)1/2

14

See (Buntine and Weigend, 1991) for other possible choices of the prior and likelihood.
Just as in example (1), once the loss function and P(w | t) are set, we’ve completely speci-
fied the goal of our learning algorithm.

3) Decision theory, neural nets, and MAP estimators.

Summarizing, the y*’s of both our examples are determined bythe vector of |X| values
∫dw net(w, x) P(w | t). In the case of example (1), this is true independent of the loss func-
tion. In case of example (2), this integral arises only because of the loss function we chose
for that example, and because we took fx,y(w) to be symmetric in Y about net(w, x).

Unfortunately though, we can’t readily evaluate∫dw net(w, x) P(w | t) and therefore can’t
readily find our Bayes-optimal guess. (See (Neal, 1993) for advice on how to approximate
the integral via Monte Carlo methods.) One crude way out of this difficulty is to hope that
the mode of P(w | t) well approximates its mean, and that that MAPw provides a similarly
good approximation for finding y*. So for instance in example (2), these hopes would
direct us to find thew, w*, which minimizesχ2(w, t) + αw2. We would then interpret
net(w*, x) as (an approximation to) the Bayes-optimal guess for the function to which
noise was added to generate our training set. This is the implicit logic behind Bayesian
views of weight decay and the like.

This is perhaps the most natural way of grafting Bayesian decision theory onto (weight-
decay) BP. Unfortunately there are a number of odd aspects to this graft. To see this, first
recall that O is the space of possible patterns on a neural net’s output neurons. So in exam-
ple (1) o∈ O is interpreted as a probability distribution of values y, given x (just like f),
whereas in example (2) o∈ O is interpreted as a value of y. Since in example (2) we must
assume that Y approximates a Euclidean vector space (see footnote (5)), in both examples
O is a Euclidean vector (or at least a good approximation to such a vector) of dimension
|O|. So in both examples, net(w, x) is a Euclidean vector, and net(w, .) is a mapping from
X to such a vector.

Next recall thatφ ∈ Φ denotes a mapping from x∈ X to o ∈ O. Since X is finite, anyφ is
a vector of |X| |O| real numbers. I will indicate the |O| real numbers induced byφ for a par-
ticular input x byφx. Now net(w, .) is aφ, and net(w, x) is aφx. Moreover, for the usual
reasons∫dw net(w, x) P(w | t) = ∫dφx φx P(φx | t) (see appendix (1)). We can rewrite this as
∫dφ φx P(φ | t). Therefore in either of our two examples y*(x, t) is determined by
∫dφ φx P(φ | t). Accordingly, one might just as easily hope that y* is well-approximated if
one uses the mode of P(φ | t) as hope that it is well-approximated if one uses (theφ associ-

7 Note that one might also try to use this kind of reasoning with the integral ∫dφx φx × P(φx | t). The
idea would be to set y*(x, t) using the set of |X| modes of P(φx | t) (one mode for each x). Intuitively,
this correspond to setting y*(x, t) for each x to the mode of P(y | x, t). Unfortunately, getting P(φx | t)
from P(w | t) is more difficult than getting P(φ | t) from P(w | t) - for each x one must add a step of
integrating over allφx'≠x: pΦx|T(φx | t) = ∫dφ' δ(φ'x − φx) pΦ|T(φ' | t)= ∫dw δ(net(w, x) - φx) P(w | t).

pendent ofσL. Intuitively, this means that our predictive distribution thinks that there is no noise in
the generation of the test set, despite the presence of noise in the generation of the training set.

13

P(w | t) ∝ P(t |w) P(w) to fix P(y, x, t) and therefore y*(x, t). As an example, one popular
choice is the weight-decay prior, P(w) ∝ exp(-αw2) for some constantα. Another popular
choice is to write P(t |w) = P(tX | w) P(tY | tX, w), and assume P(tX | w) has now-depen-
dence. (The general implications of having P(tX | w) be independent ofw are discussed in
(Wolpert, 1994).) Then one takes P(tY | tX, w) ∝ Πi P(tY(i) | tX(i), w), and
P(tY(i) | tX(i), w) = net(w, tX(i))ty(i).

Having set P(w | t) and fixed the loss function, we’ve completely specified how we want
our learning algorithm to behave; we want it to guess the corresponding Bayes-optimal h.

Example 2: Consider schemes like those which use neural nets for “regression” (i.e., sur-
face-fitting). In these schemes the neural net output is not viewed as a direct conditional
probability distribution fx,y, but rather as a Y value to which noise is added to get fx,y. So
w doesn’t directly code for a P(y | x), but rather for a mapping from an X value to a Y
value. This means that net(w, x) is a Y value, and we have (as an example) the y-depen-
dence of fx,y(w) ~ N(net(w, x), σ2), for some pre-fixedσ.5

Intuitively, this is the familiar “function plus noise” scenario; we can view fx,y(w) as the
distribution generating training set output values when the “target” input-output function
is given by the weight vectorw. For this scenario,

P(y, x, t) = ∫dw exp[-(net(w, x) - y)2 / 2σ2] P(w | t),

up to overall normalization constants. So as an example, if we have quadratic loss, then
y*(x, t) = ∫dw net(w, x) P(w | t), independent ofσ. (Note that we would not get so neat a
y*(x, t) if we used zero-one loss, like in example (1).)

As before, to set P(w | t) we might have P(w) ∝ exp(−αw2). However now we would prob-
ably have something like a gaussian noise likelihood, P(t |w) ∝ P(tY | tX, w) ∝
Πi exp [-{net(w, tX(i)) - ty(i)}

2 / 2(σL)2] ≡ exp[-χ2(w, t)].6

5 So that statements like “the y-dependence of fx,y(w) ~ N(net(w, x), σ2)” can be meaningful, in this
example it is implicitly assumed that although it is finite, Y is very large and consists of closely
spaced element ofRN for some N. Since we also are assuming that “net(w, x) is a Y value”, O⊆ Y,
and strictly speaking the set of possible output values of the neural net is finite. (For the reasons dis-
cussed in section two this finiteness of O presents no foundational difficulties.) For simplicity, I will
assume that O = Y; since Y approximatesRN, so does O (again see section two). Note that despite
all these finite-but-large issues, bothw and fx,y are still taken to be infinite-precision real-valued
numbers. Note also the notational convention that “|O|” means N.

6 Recall that our general form for P(c | h, f, t) assumes that training and testing sets are generated
identically, which means thatσL must equalσ. However often when dealing with function+noise
scenarios we wish to guess the target function directly (rather than that function with noise added).
To deal with this formally, one must change P(c | h, f, t) so that P(test set output value yf | test set
input value x, f) does not equal fx,yf

 , but rather equals a (y-space) delta function centered at the

mode of (the y-dependence of) the Gaussian function fx,y. This is equivalent to settingσ to 0, inde-

12

error.

It’s easy to verify that for the E(c | h, t) given above, to produce the Bayes-optimal h your
algorithm must i) take each x and find y*(x, t), the yh value that minimizes the sum
Σyf

 L(yf, yh) P(yf, x, t) for that x; and then ii) output hx,y = δ(y, y*(x, t)). In other words,

for any x optimal behavior is to guess the Y value y*(x, t). Since the Bayes-optimal h is
fixed by the loss function and the predictive distribution, and since the user specifies the
loss function, all of the statistical inference reduces to finding the predictive distribution.

As an example, by setting∂ /∂yh [Σyf
 L(yf, yh) P(yf, x, t)] = 0, we see that for quadratic

loss y*(x, t) =Σyf
 yf P(yf, x, t). (When the predictive distribution equals P(yf | x, t), this is

just the posterior expected y, E(yf | x, t).) As another example, for zero-one loss y*(x, t) =
argmaxyf

P(yf, x, t).

2) Decision theory and neural nets.

To relate the foregoing to neural nets, we need to cast neural net weight vectorsw as
parameters of X-Y relationships f. Accordingly, we must specify the coordinate transfor-
mation taking (Euclidean vectors)w to (Euclidean vectors) f. In the examples of this pre-
sented below, attention is implicitly restricted to neural nets with continuously
differentiable activation functions.

Example 1: In schemes like softmax (Bridle, 1990),w directly parameterizes a conditional
distribution f, with the output neuron index giving y. More formally, in these schemesw
fixes f via the rule fx,y(w) = net(w, x)y, where by “net(w, x)” is meant the vector of the val-
ues of output neurons which arises when input x is propagated through a net with weight
vectorw, and the subscript ‘y’ denotes the y’th output neuron. (N.b. net(w, x)y must be
non-negative and normalized over y for this probabilistic interpretation of the net’s output
to be valid; to ensure this “net(w, x)” is usually a neural net used with a bit of post-pro-
cessing.)

Since there can be f’s which don’t correspond to anyw (or perhaps correspond to more
than onew), one must be careful in convertingP(y, x, t) from an f-space integral to a w-
space integral. Following along with the standard procedure (see appendix (1)), one gets

P(y, x, t) = ∫dw net(w, x)y P(w | t) = [∫dw net(w, x) P(w | t)]y.

So as an example, for this scenario, with zero-one loss, the Bayes-optimal guess is given
by y*(x, t) = argmaxy ∫dw net(w, x)y P(w | t).

The usual next step is to set the likelihood P(t |w) and prior P(w), and plug these into

value of c - the loss - is the average of the utility over the entire set of users. Write that loss as L*(h,
yf, x). For this scenario P(c | f, h, t) =Σx,yf

π(x) P(yf | x, f) δ(c, L*(h, yf, x)), which means that E(c | f,

h, t) = Σx,yf
π(x) P(yf | x, f) L*(h, yf, x). For many choices of L*(., ., .) this E(c | f, h, t) can not be

written asΣx,yh,yf
π(x) P(yf | x, f)P(yh | x, h)L(yf, yh) for some function L(., .). QED.

11

E(C | h, t)≡ ∫df ∫dc [cpC|H,F,T(c | h, f, t)pF|T(f | t)].

In the P notation this is written as

E(c | h, t)≡ ∫df dc [cP(c | h, f, t)P(f | t)].

So long as we can identify a distribution h produced by our learning algorithm and so long
as the real-world cost can be (perhaps only statistically) related to f, h, and t, the goal of
finding the h minimizing E(c | h, t) is well-defined. Note that to meet this goal we need to
know P(c | h, f, t). This distribution in effect defines what we mean by “loss”. It is set by
the supervised learning scenario at hand, and by how the end-user uses h.

As an example - one followed for most of the rest of this appendix - often when we’re
given h and f, to find a value of the random variable C we: i) randomly choose an x value
x' according to some pre-fixed distributionπ(x); ii) randomly sample the y-dependence of
hx',y to get a guessed y value, yh; iii) randomly sample the y dependence of fx',y to get a
“true” or “test set” y value yf; and finally iv) set c to the value L(yh, yf) for some function

L(., .).3 L(., .) is the loss function for this procedure, and should reflect the real-world cost
of guessing yh when the “true” y value is yf. Typical pedagogical choices are the quadratic

loss, L(a, b) = (a - b)2, and the zero-one loss, L(a, b) = 1 -δ(a, b).

With this procedure for generating values of c, P(c | h, f, t) is given by the sum
Σx,yh,yf

π(x) P(yf | x, f)P(yh | x, h) δ(c, L(yh, yf)). This means that

E(c | h, t) =Σx,yh,yf
{ π(x) hx,yh

L(yf, yh) ∫df fx,yf
 P(f | t) }.

In the context of this P(c | h, f, t), with slight abuse of convention the term “predictive dis-
tribution” will mean∫df fx,yf

 P(f | t). I will write this integral as P(yf, x, t). Often x is statis-

tically independent of t, in which caseP(yf, x, t) = P(yf | x, t), so thatP(yf, x, t) “predicts”
the probability of the test set output yf, given training set t and test set input x.

Our equation for E(c | h, t) should be familiar - it closely resembles what in the neural net
community is sometimes defined as “generalization error”, or (average) “test set error”.
Indeed, for our P(c | f, h, t), as it’s usually defined the generalization error is identical to
E(c | h, f) = E(c | f, h, t) =Σx,yh,yf

{ π(x) hx,yh
L(yf, yh) fx,yf

 }.4 Accordingly, E(c | h, t) is

just the (posterior) average, over all f, of the generalization error for a particular h and f.
The Bayes-optimal h is simply the h that minimizes this posterior expected generalization

4 It’s important to understand that this “generalization error” form for E(c | f, h, t) is nota priori nec-
essary in any sense. Many other forms are reasonable. As an example, in an extension of the sce-
nario considered in (Rosen, 1994), a value of c is generated as follows: The distribution f is sampled
to get yf, andπ(x) is sampled to get x, as usual. The learner then provides hx,y - generated in
response to t - to a distribution of “users”. Each user, following his own algorithm, uses hx,y and x
to make a “decision” u∈ U. Each such user’s u is combined with yf to get a “utility” value. The

3 Note the assumption in step (iii) that the test set is generated from x values and f in the same way
that t is. In general, P(tY(i) | tX(i), f) = ftX(i), tY(i) ∀ i, but P(test set output y' | test set input x', f)≠
fy',x' if the process generating the test set is different from the process generating the training set t.

10

Appendix Two: Bayesian decision theory and neural nets.

This appendix casts BP in terms of (predictive paradigm) Bayesian decision theory (Berger,
1985; Titterington, 1985), using a variation of the formalism in (Wolpert, 1992). To illus-
trate the discussion, this appendix will examine both an example where O is the direct ob-
ject of interest (e.g., when one uses neural nets for regression) and an example where O
gives relative probabilities of possible values of the direct object of interest (e.g., when one
uses neural nets for classification in concert with a scheme like softmax). The first part of
the appendix presents a cursory overview of (the salient aspects of) decision theory, the sec-
ond section relates decision theory to neural nets, and the third section uses this to discuss
various kinds of MAP estimators involving neural nets.

Wherever possible “P” notation will be used: the arguments of a “P” indicates if it’s a
probability or a density, and if the latter, what random variable it’s over.

1) A quick review of Bayesian decision theory.

Assume we have an input space X and an output space Y. For expository simplicity, I will
take both to be finite (although sometimes Y will implicitly be assumed to be a very large
set of closely spaced real numbers). In general, Y isnot the same as the space O discussed
in the text - the space O will enter the analysis later.

Let ‘f’ be a function giving the probability of y∈ Y conditioned on x∈ X. This is indi-
cated by writing P(y | x, f) = fx,y. (Note that f is a vector of real numbers, with components
fx,y.) When extra precision is required, ‘F’ will indicate the random variable of which ‘f’ is
an instantiation. So for example, pY|X,F(y | x, f) = fx,y.

f labels the “true” or “target” conditional distribution of y given x, in that the training set is
generated according to f. In other words, P(t | f) is our likelihood function. For the pur-
poses of this paper, this means that P(tY | tX, f) = Πi ftX(i), tY(i). Of course, we don’t know

f, only the training set t - loosely speaking, our goal is to use t to guess f.

Let hx,y be the x-conditioned probability distribution over values y which is produced by
our learning algorithm in response to t. Sometimes our algorithm’s “output” is a quantity
based on h (e.g., our algoirthm might produce a decision of some sort based on h). But
often h itself is the output of our algorithm. In particular, if our algorithm’s output is a
guessed function from X to Y, and if our algorithm always guesses the same function
when trained on the same data t, then hx,y is of the formδ(y, η(x, t)) for some function
η(., .). (See examples (1) and (2) below.)

Now define a real-world (usually random variable) quantity C which represents the “loss”
(or what in some circumstances is called “cost” or “utility” or “value”) associated with a
particular fx,y and hx,y. For each t we want our learning algorithm to produce the associ-
ated “Bayes-optimal” hx,y, which is the hx,y minimizing the posterior expected loss

E(C | h, t)≡ ∫df ∫d(loss values c) [cpC|H,F,T(c | h, f, t)pF|H,T(f | h, t)].

Now in supervised learning the output of a learning algorithm h and the target f are only
coupled through the training set t, i.e., if we know t, knowing h as well doesn’t help in
nailing down f. Accordingly (see (Wolpert, 1992)), pF|H,T(f, | h, t) = pF|T(f | t), and

9

Appendix One: The irrelevance of choice of integration
variables for calculating moments.

This appendix reviews the standard proof that expectation values are “independent” of the
choice of integration variables, i.e., that there’s no correction term for calculating
moments. The result is recapitulated here due to its importance for this paper’s results.

Let “Pr” indicate probabilities, and “p” indicate probability densities (as in the text). LetU
be a |U|-dimensional real-valued random variable, andV a |V|-dimensional random vari-
able. A particular value ofV is indicated byv, and a particular value ofU is indicated by
u. In addition toU andV, we have a random variableD (with valuesd) which will be used
for conditioning probability densities. The results claimed in the text obtain if one substi-
tutesU for W, andT for D and either F orΦ (as the case might be) forV.

It is assumed thatV is given in terms ofU via Vi = neti(U) (i is a component ofV). No
other assumptions are made. In particular, no assumptions are made about the single-val-
uedness (or even the existence, for allV) of the mapping fromV to U, and no assumption
is made about the relative sizes of |U| and |V|.

We want to evaluate E(Z(V) | d) = ∫dv Z(v) pV|D(v | d) for some function Z(.). (In most of
this paper, Z(v) = v.)

First write pV|D(v | d) = ∂v1
 ... ∂v|V|

 { Pr(V1 < v1, ...,V|V| < v|V| | d) }.

Then expand Pr(V1 < v1, ...,V|V| < v|V| | d) = ∫du [pU|D(u | d) × Π|V|
i=1 θ(vi - neti(u))],

whereθ(.) is the Heaviside step function.

Interchange orders of integration:

∫dv Z(v) pV|D(v | d) = ∫dv Z(v) ∂v1
 ... ∂v|V|

 { ∫du [pU|D(u | d) × Π|V|
i=1 θ(vi - neti(u))] }

= ∫du[pU|D(u | d)× ∫dv Z(v) ∂v1
 ... ∂v|V|

 {Π|V|
i=1 θ(vi - neti(u)) }].

Evaluating the partial derivatives, we get

E(Z(V) | d) = ∫du [pU|D(u | d) × ∫dv Z(v) Π|V|
i=1 δ(vi - neti(u))]

= ∫du [pU|D(u | d) × Z(net1(u), net2(u), ..., net|V|(u))].

This gives our final result:

E(Z(V) | d) = ∫dv pV|D(v | d) Z(v) = ∫du [pU|D(u | d) × Z(net1(u), net2(u), ..., net|V|(u))].

8

parametersλ1 > 0 andλ2 > 0.

4 BEYOND THE CASE OF BACKPROP WITH |W| = |X| |O|

When O does not approximate a Euclidean vector space, elements ofΦ have probabilities
rather than probability densities, and P(φ | t) = ∫dw pW|T(w | t) δ(net(w, .), φ), (δ(., .) being
a Kronecker delta function). Moreover, if O is a Euclidean vector space but |W| > |X| |O|,
then again one must evaluate a difficult integral;Φ = net(W, .) is not one-to-one so one
must use equation (1) rather than (2). In fact, when |W| > |X| |O|, even uncorrected BP can
be somewhat problematic (e.g., the local minima of unregularized, uncorrected BP generi-
cally will be hypersurfaces rather than isolated points, so that the procedure’s stopping
point isn’t well-defined). Fortunately, these two situations are relatively rare.

The final case to consider is |W| < |X| |O| (see section (2)). Let S(W) be the surface inΦ
which is the image (under net(W, .)) ofW. For allφ pΦ(φ) is either zero (whenφ ∉ S(W))
or infinite (whenφ ∈ S(W)). So as conventionally defined, “MAPφ” is not meaningful.

One way to deal with this case is to embed the net in a larger net, where that larger net’s
output is relatively insensitive to the values of the newly added weights. An alternative
that is applicable when |W| / |O| is an integer is to reduce X by removing “uninteresting”
x’s. A third alternative is to consider surface densities over S(W), pS(W)(φ), instead of vol-
ume densities overΦ, pΦ(φ). Such surface densities are given by equation (2), if one uses
the metric form of JΦ,W(w). (Buntine has emphasized that the Jacobian form is not even
defined for |W| < |X| |O|, since∂φi / ∂wj is not square then (personal communication).)

As an aside, note that restricting pΦ(φ) to S(W) is an example of the common theoretical
assumption that “target functions” come from a pre-chosen “concept class”. In practice
such an assumption is usually ludicrous - whenever it is made there is an implicit hope that
it constitutes a valid approximation to a more reasonable pΦ(φ).

When decision theory is incorporated into Bayesian analysis, only rarely does it advise us
to evaluate an MAP quantity (i.e., use BP). Instead Bayesian decision theory usually
advises us to evaluate quantities like E(Φ | t) = ∫dφ pΦ|T(φ | t) φ (see appendix (2)). Just as
it does for the use of MAP estimators, the analysis of this paper has implications for the
use of such E(Φ | t) estimators. In particular, if we don’t modify the prior to remove the
singularities in the correction term (see previous section), then those singularities occur in
the integrand of E(Φ | t). Accordingly, one would expect theφ’s around those singularities
to be “major contributors” to the integral. (Whether or not they dominate the integral
depends on the precise mapping fromW to Φ.)

A related implication for Bayesian decision theory comes from the fact that one way to
evaluate E(Φ| t) = ∫dw pW|T(w | t) net(w, .) is to expand net(w, .) to low order and then
approximatepW|T(w | t) as a sum of Gaussians (Buntine and Weigend, 1991). For the case
where |W| = |X| |O| and we’ve modified the prior to remove singularities, equation (4) sug-
gests an alternative: write E(Φ | t) as∫dφ pΦ|T(φ | t) φ and approximatepΦ|T(φ | t) as a sum
of Gaussians, as discussed in appendix (4). (Note that if |W| < |X| |O|then pΦ|T(φ | t) can’t
be approximated as a Gaussian.) Since fewer approximations are used (no low order
expansion of net(w, .)), this might be more accurate. Of course, if the dimension of the
space over which we’re integrating is large, no scheme based on behavior around the
peaks of some terms in the integrand is likely to give a good approximation.

7

ing into neuron K without affecting net(w*, .), the integral diverges for nowhere-zero
pW(w). (Recall thatδ(net(w', .) - net(w*, .)) is actually a product of delta functions.) So
w* is singular; removing a hidden neuron results in an enhanced probability. This consti-
tutes ana priori argument in favor of trying to remove hidden neurons during training.

This argument does not apply to weights leadinginto a hidden neuron;JΦ,W(w) treats
weights in different layers differently. This fact suggests that however pW(w) compen-
sates for the singularities inJΦ,W(w), weights in different layers should be treated differ-
ently by pW(w). This is in accord with the advice given in (MacKay, 1992).

To see that some kinds of weight-shared nets have singular weights, letw' be a weight vec-
tor such that for any two hidden neurons K and K' the weight from input neuron i to K
equals the weight from i to K', for all input neurons i. In other words,w is such that all hid-
den neurons compute identical functions of x. (For some architectures we’ll actually only
need a single pair of hidden neurons to be identical.) Usually for such a situation there is a
pair of columns of the matrix∂φi / ∂wj which are exactly proportional to one another. (For
example, in a 3-2-1 architecture, with X = {z, 1}3, |W| = |X|× |O| = 8, and there are four
such pairs of columns.) This means that JΦ,W(w') = 0;w' has an enhanced probability, and
we have ana priori argument in favor of trying to equate hidden neurons during training.

The argument that feature-selected nets have singular weights is architecture-dependent,
and there might be reasonable architectures for which it fails. To illustrate the argument,
consider the 3-2-1 architecture. Let x1(k) and x2(k) with k = {1, 2, 3} designate three dis-
tinct pairs of input vectors. For each k have x1(k) and x2(k) be identical for all input neu-
rons except neuron A, for which they differ. (Note there are four pairs of input vectors
with this property, one for each of the four possible patterns over input neurons B and C.)
Let w' be a weight vector such that both weights leaving A equal zero. For thissituation
net(w', x1(k)) = net(w', x2(k)) for all k. In addition ∂ net(w, x1(k)) / ∂wj =
∂ net(w, x2(k)) / ∂wj for all weightswj except the two which lead out of A. So k = 1 gives
us a pair of rows of the matrix∂φi / ∂wj which are identical in all but two entries (one row
for x1(k) and one for x2(k)). We get another such pair of rows, differing from each other in
the exact same two entries, for k = 2, and yet another pair for k = 3. So there is a linear
combination of these six rows which is all zeroes. This means that JΦ,W(w') = 0. This con-
stitutes ana priori argument in favor of trying to remove input neurons during training.

Since it doesn’t favor any pW(w), the analysis of this paper doesn’t favor any pΦ(φ).
Indeed, this paper’s analysis implies that setting pW(w) without any concern for howw
fixes φ - which is how many traditional pW(w) are set - is a dubious way of setting priors.

Nonetheless, when combined with empirical knowledge the analysis of this papersuggests
certain pΦ(φ). For example, there are functions g(w) which empirically are known to be

good choices for pΦ(net(w, .)) (e.g., g(w) �∝exp[αw2]). There are usually problems with
such choices of pΦ(φ) though. For example, these g(w) usually make more sense as a prior
overW than as a prior overΦ, which implies that one should instead use pΦ(net(w, .)) =
g(w) / JΦ,W(w). Moreover it’s empirically true that enhancedw should be favored over
other w, as advised by the correction term. So it makes sense to choose a compromise
between the two candidate forms for pΦ(net(w, .)), g(w) and g(w) / JΦ,W(w). An example
of such a compromise is pΦ(net(w, .)) ∝ g(w) / [λ1 + tanh(λ2 × JΦ,W(w))] for two hyper-

6

does. Since the correction term “pushes out”w, and since tanh(.) grows with its argument,
a φ found by modified BP has larger (in magnitude) values of o than does the correspond-
ing φ found by unmodified BP. In addition, unlike unmodified BP, modified BP has multi-
ple extrema over certain regimes. All of this is illustrated in figures (1) through (3), which
graph the value of o resulting from using modified BP with a particular training set t and
input value x vs. the value of o resulting from using unmodified BP with t and x. Figure (4)
depicts thewi-dependences of the weight decay term and of the weight-decay term plus
the correction term. (When there’s no data, BP searches for minima of those curves.)

Now consider multi-layer nets, possibly with non-unary X. Denote a vector of the compo-
nents ofw which lead from the input layer into hidden neuron K byw[K] . Let x' be the
input vector consisting of all 0’s. Then∂ tanh(w[K] · x') / ∂wj = 0 for any j, w, and K, and
for any w, there is a row of ∂φi / ∂wj which is all zeroes. This in turn means that JΦ,W(w) =
0 for anyw, which means thatWinj is empty, andpΦ|T(φ | t) is independent of the data t.
(Intuitively, this problem arises since the o corresponding tox' can’t vary withw, and
therefore the dimension ofΦ is less than |W|.) So we must forbid such an all-zeroesx'.
The easiest way to do this is to require that one input neuron always be on, i.e., introduce a
bias unit. An alternative is to redefineΦ to be the functions from the set {X - (0, 0, ..., 0)}
to O rather than from the set X to O. Another alternative, appropriate when the original X
is the set of all input neuron vectors consisting of 0’s and 1’s, is to instead have input neu-
ron values∈ {z ≠ 0, 1}. This is the solution implicitly assumed from now on.

As an aside, one should note that in general this z can not equal -1; due to the symmetries
of the tanh, for many architectures z = -1 means that two rows of∂φi / ∂wj are identical up
to an overall sign, which means that JΦ,W(w) = 0. Intuitively, for those architectures, spec-
ifying the output associated with input x leaves us no freedom in what the output associ-
ated with input -x is. So in effect, the dimension ofΦ is less than that ofW.

JΦ,W(w) will be small - and therefore pΦ(net(w, .)) will be large - whenever one can make
large changes tow without affectingφ = net(w, .) much. In other words, pΦ(net(w, .)) will
be large whenever we don’t need to specifyw very accurately. So the correction factor
favors thosew which can be expressed with few bits. In other words, the correction factor
enforces a sort of automatic MDL (Rissanen, 1986; Nowlan and Hinton, 1994).

More generally, for any multi-layer architecture there are many “singular weights”wsin ∉
Winj such that JΦ,W(wsin) is not just small but equals zero exactly. pW(w) must compen-
sate for these singularities, or the peaks of pΦ|T(φ | t) won’t depend on t. So we need to
have pW(w) → 0 asw → wsin. Sometimes this happens automatically. For example often
wsin includes infinite-valuedw’s, since tanh'(∞) = 0. Because pW(∞) = 0 for the weight-
decay prior, that prior compensates for the infinite-w singularities in the correction term.

For otherwsin there is no such automatic compensation, and we have to explicitly modify
pW(w) to avoid singularities. In doing so though it seems reasonable to maintain a “bias”
towards thewsin, that pW(w) goes to zero slowly enough so that the values pΦ(net(w, .))
are “enhanced” forw nearwsin. Although a full characterization of such enhancedw is not
in hand, it’s easy to see that they include certain kinds of pruned nets (Hassibi and Stork,
1992), weight-shared nets (Nowlan and Hinton, 1994), and feature-selected nets.

To see that (some kinds of) pruned nets have singular weights, letw* be a weight vector
with a zero-valued weight coming out of hidden neuron K. By (1) pΦ(net(w*, .)) =
∫dw' pW(w') δ(net(w', .) - net(w*, .)). Since we can vary the value of each weightw* i lead-

5

tion constant). Then p*Φ|T(net(w, .) | t) = pW|T(w | t). So by redefining what we call the
prior we can justify use of conventional uncorrected BP; the (new) MAP φ corresponds to
the w minimizing M(w, t). However such a redefinition changes E(Φ | t) (amongst other
things): ∫dφ p*Φ|T(φ | t) φ = ∫dw p*W|T(w | t) net(w, .) ≠ ∫dw pW|T(w | t) net(w, .) =
∫dφ pΦ|T(φ | t) φ. So one can either modify BP (by adding in the correction term) and leave
E(Φ | t) alone, or leave BP alone but change E(Φ | t); one can not leave both unchanged.

Moreover, some procedures involve both prior-based modes and prior-based integrals, and
therefore are affected by the correction term no matter how pW(w) is redefined. For exam-
ple, in the evidence procedure (Wolpert and Strauss, 1994; MacKay, 1992) one fixes the
value of a hyperparameterΓ (e.g.,α from the introduction) to the value γ' maximizing
pΓ |T(γ' | t). Next one finds the value s' maximizing pS|T,Γ (s' | t,γ') for some variable S.
Finally, one guesses theφ associated with s'. Now it’s hard to see why one should use this
procedure with S =W (as is conventional) rather than with S =Φ. But with S =Φ rather
thanW, one must factor in the correction term when calculating pS|T,Γ (s | t,γ'), and there-
fore the guessedφ is different from when S =W. If one tries to avoid this change in the
guessedφ by absorbing the correction term into the prior pW|Γ(w | γ), then pΓ |T(γ | t) -
which is given by an integral involving that prior - changes. This in turn changesγ', and
therefore the guessedφ again is different. So presuming one is more directly interested in
Φ rather thanW, one can’t avoid having the correction term affect the evidence procedure.

It should be noted that calculating the correction term can be laborious in large nets. One
should bear in mind the determinant-evaluation tricks mentioned in (Buntine and
Weigend, 1991), as well as others like the identity ln[JΦ,W(w)] = Tr(ln[∂φi / ∂wj]) ≅
Tr(ln*[∂φi / ∂wj]), where ln*(.) is ln(.) evaluated to several orders.

3 EFFECTS OF THE CORRECTION TERM
To illustrate the effects of the correction term, consider a perceptron with a single output
neuron, N input neurons and a unary input space: o = tanh(w · x), andx always consist of
a single one and N - 1 zeroes. For this scenario∂φi / ∂wj is an N × N diagonal matrix, and
ln[JΦ,W(w)] = −2 ΣN

k=1 ln[cosh(wk)]. Assume the Gaussian prior and likelihood of the
introduction, and for simplicity take2σ2 = 1. BothM(w, t) andM'(w, t) are sums of terms
each of which only concerns one weight and the corresponding input neuron. Accord-
ingly, it suffices to consider just the i’th weight and the corresponding input neuron.

Let x(i) be the input vector which has its 1 in neuron i. Let oj(i) be the output of the j’th
of the pairs in the training set with inputx(i), and mi the number of such pairs. With α = 0
(no weight decay), M(w, t) = χ2(t, w), which is minimized byw'i = tanh-1[Σmi

j=1
oj(i) /

mi]. If we instead try to minimizeχ2(t, w) + JΦ,W(w) though, then for low enough mi (e.g.,
mi = 1), we find that there is no minimum.2 The correction term pushesw away from0,
and for low enough mi the likelihood isn’t strong enough to counteract this push.

When weight-decay is used though, modified BP finds a solution, just like unmodified BP

2 Minimizing χ2(t, w) + JΦ,W(w) corresponds to finding the MAPφ for flat pW(w). Note that neither
the MAPφ for flat pΦ(φ) nor the MAPw for flat pW(w) have the no-minimum problem; both MAP’s
give the maximum likelihood (ML)φ.

4

implementations of such a measure. In particular, the correction term changes thelocation
of the peakw'. It also suggests that a peak’squality be measured by the Hessian of
M'(w', t) with respect toφ, rather than by the Hessian of M(w', t) with respect tow.1 (Note
though that calculatingthe Hessian of M'(w', t) with respect toφ is usually more difficult
than calculating the Hessian of M(w', t) with respect tow - see appendix (4).)

If we stipulate that the pΦ|T(φ | t) one encounters in the real world is independent of how
one chooses to parameterizeΦ, then the probability densityof our parameter must depend
on how it gets mapped toΦ. This is the basis of the correction term. As this suggests, the
correction term won’t arise if we use non-pΦ|T(φ | t)-based estimators, like maximum-like-
lihood estimators. (This is a basic difference between such estimators and MAP estimators
with a uniform prior.) The correction term is also irrelevant if it we use an MAP estimate
but JΦ,W(w) is independent ofw (as when net (w, .) depends linearly onw). And even for
non-linear net(w, .), the correction term has no effect for some non-MAP-based ways to
apply Bayesianism to neural nets, like guessing the posterior averageΦ (Neal, 1993):

E(Φ | t) ≡ ∫dφ pΦ|T(φ | t) φ = ∫dw pW|T(w | t) net(w, .), (4)

so one can calculate E(Φ | t) by working inW, without any concern for a correction term.
(Loosely speaking, the Jacobian associated with changing integration variables cancels the
Jacobian associated with changing the argument of the probability density. A formalderi-
vation - applicable even when |W| ≠ |X| |O| - is in appendix (1).)

One might think that since it’s independent of t, the correction term can be absorbed into
pW(w). Ironically, it is precisely because quantities like E(Φ | t) aren’t affected by the cor-
rection term that this is impossible: Absorb the correction term into the prior, giving a new
prior p*W(w) ≡ d pW(w) JΦ,W(w) (asterisks refers to new densities, and d is a normaliza-

in evaluating quantities like output-variances. To understand this, let z denote an element of O, and
let Φ(x') denote the |O| components ofΦ associated with some particular input x'. (Recall thatΦ is
an (|X|× |O|)-dimensional random variable.) Consider ∫dz [z - net(w', x')]2 pΦ(x')|T(z | t). This is the
variance in the output at x', about the value net(w', x'). It gives an idea of how justified you are in
estimating the output at x' as net(w', x'). The workers in question often wish to evaluate this variance
whenw' is a local maximum of pW|T(w | t). One way to (try to) do this starts by rewriting the vari-

ance as ∫dφ [φ(x') - net(w', x')]2 pΦ|T(φ | t), which equals ∫dw [net(w, x') - net(w', x')]2 pW|T(w | t)
(whether or not |W| = |X| |O| - see appendix (1)). Up to this point everything’s exact. Now approxi-
mate the pW|T(w | t) in the integrand as a Gaussian about the local maximumw', expand [net(w, x) -

net(w', x)]2 to low order, and evaluate the resultant Gaussian integral. The resultant value is quoted
by some workers as equalling the desired variance. (The Hessian of M(w, t) enters the picture in
forming the Gaussian approximation to pW|T(w | t).) The problem with this single-Hessian approxi-
mation is that pW|T(w | t) usually has many local maxima. And thew-integral in question is almost
always dominated by pW|T(w | t) at the other local maxima besidesw'. (This is because the quantity

[net(w, x) - net(w', x)]2 is usually much larger forw near those other maxima than it is forw near
w'.) In such a situation,the estimate of the output-variance produced by the single-Hessian approxi-
mation is essentially useless. At a minimum, one must examine a representative subset of all the
maxima to get a decent estimate of the output variance. (See (Buntine and Weigend, 1991) for a cur-
sory discussion of how to take those other maxima into account.) Unfortunately, when |W| is large
even this doesn’t suffice; for suchW the integral is unlikely to be dominated by the (relatively tiny)
part of the space corresponding to the maxima, and one learns nothing by examining those maxima.

3

the other i-o functions, withδ(.) being the multivariable Dirac delta function,

pΦ|T(net(w, .)) = ∫dw' pW|T(w') δ(net(w', .) - net(w, .)). (1)

When the mappingΦ = net(W, .) is one-to-one, we can evaluate equation (1) to get

pΦ|T(net(w, .) | t) = pW|T(w | t) / JΦ,W(w), (2)

where JΦ,W(w) is the Jacobian of the W → Φ mapping:

JΦ,W(w) ≡ | det[∂Φi / ∂W j](w) | = |det[∂ net(w, .)i / ∂wj] |. (3)

“net(w, .)i” means the i’th component of the i-o function net(w, .). “net(w, x)” means the
vector o mapped by net(w, .) from the input x, and “net(w, x)k” is the k’th component of o.
So the “i” in “net(w, .)i” refers to a pair of values {x, k}. Each matrix value ∂φi / ∂wj is the
partial derivative of net(w, x)k with respect to some weight, for some x and k. JΦ,W(w) can
be rewritten as det1/2 [gij(w)], where gij(w) ≡ Σk [(∂φk / ∂wi) (∂φk / ∂wj)] is the metric of
theW → Φ mapping. This form of JΦ,W(w) is usually more laborious to evaluate though.

Unfortunatelyφ = net(w, .) is not one-to-one; whereJΦ,W(w) ≠ 0 the mapping islocally
one-to-one, but there are global symmetries which ensure that more than onew corre-
sponds to eachφ. Such symmetries arise from permuting the hidden neurons or changing
the sign of all weights leading into or out of a hidden neuron - see (Fefferman, 1993) and
references therein. (For simplicity, we restrict attention to the usual case (for when|W| ≤
|X| |O) where the number ofw corresponding to a particularφ is finite.) The easiest way to
circumvent the difficulty of this non-injectivity is to make a pair of assumptions.

To begin, restrict attention toW inj, thosevaluesw of the variableW for which the Jaco-
bian is non-zero. This ensures local injectivity of the map betweenW andΦ. Given a par-
ticular w ∈ W inj, let k be the number ofw' ∈ W inj such that net(w, .) = net(w' , .). (Since
net(w, .) = net(w, .), k≥ 1.) Such a set of k vectors form an equivalence class, {w}.

The first assumption is that for allw ∈ W inj the size of {w} (i.e., k) is the same. This will
be the case if we exclude degeneratew (e.g.,w’s with all first layer weights set to 0). The
second assumption is that for allw' andw in the same equivalence class, pW|D (w | d) =
pW|D (w' | d). This assumption also usually holds. (For example, start withw' and relabel
hidden neurons to get a new w ∈ {w'}. If we have the Gaussian likelihood and prior, then
since neither differs for the two w’s the weight-posterior is also the same for the two w’s.)

Given these assumptions, pΦ|T(net(w, .) | t) = k pW|T(w | t) / JΦ,W(w). So rather than mini-
mize the usual cost function, M(w, t), to find the MAPΦ BP should minimize M'(w, t) ≡
M(w, t) + ln[JΦ,W(w)]. The ln[JΦ,W(w)] term constitutes a correction term to conven-
tional BP. (Note that when the pair of assumptions don’t hold, the only change in the anal-
ysis is the addition of some book-keeping - for eachw' the correction term now must take
into account k and how pW|T(w | t) varies amongst the elements of {w'}.)

One should not confuse the correction term with other quantities in the neural net litera-
ture which involve partial derivative matrices. As an example, one way to characterize the
“quality” of a local peakw' of a cost function involves the Hessian of that cost function
(Buntine and Weigend, 1991). The correction term doesn’t directly concern the validity of
such a Hessian-based quality measure. However it does concern the validity of some

1 As an aside on the subject of Hessians, it should be noted that some workers incorrectly use them

2

for example with the Gaussian likelihood and weight decay prior, the most probablew giv-
en the data is thew minimizingχ2(w, t) + αw2. Accordingly BP with weight decay can be
viewed as a scheme for trying to find the function from input neuron values to output neu-
ron values (i-o function) induced by the MAPw.

One peculiar aspect of this justification of weight-decay BP is the fact that rather than the
i-o function induced by the most probableweight vector, in practice one would usually pre-
fer to know the most probable i-ofunction. (In few situations would one care more about a
weight vector than about what that weight vector parameterizes.) Unfortunately, the differ-
ence between these two i-o functions can be large; in general it isnot true that “the most
probable output corresponds to the most probable parameter” (Denker and LeCun, 1991).

This paper shows that to find the MAP i-o function rather than the MAPw one adds a “cor-
rection term” to conventional BP. That term biases one towards i-o functions with small
description lengths, and in particular favors feature-selection, pruning and weight-sharing.
In this that term constitutes a theoretical argument for those techniques. (A decision-theo-
retic discussion of the merits of MAP estimators in general can be found in appendix (2).)

Although cast in terms of neural nets, this paper’s analysis applies to any case where con-
vention is to use the MAP value of a parameter encoding Q to estimate the value of Q.

2 BACKPROP OVER I-O FUNCTIONS
Assume the net’s architecture is fixed, and that weight vectorsw live in a Euclidean vector
spaceW of dimension |W|. Let X be the set of vectors x which can be loaded on the input
neurons, and O the set of vectors o which can be read off the output neurons. Assume that
the number of elements in X (|X|) is finite. This is always the case in the real world, where
measuring devices have finite precision, and where the computers used to emulate neural
nets are finite state machines. (In addition, in practice we can restrict X to be the input val-
ues of the test set, in which case X is explicitly finite. See appendix (3).) For similar reasons
O is also finite in practice. However for now assume that O is very large and “fine-grained”,
and approximate it as a Euclidean vector space of dimension |O|. (This assumption usually
holds with neural nets, where output values are treated as real-valued vectors.) This as-
sumption will be relaxed later.

Indicate the set of functions taking X to O byΦ. (net(w, .) is an element ofΦ.) Any φ ∈ Φ
is an (|X||O|)-dimensional Euclidean vector. Accordingly, densities overW are related to
densities overΦ by the usual rules for transforming densities between |W|-dimensional
and (|X| |O|)-dimensional Euclidean vector spaces.There are three cases to consider:

1) |W| < |X| |O|. In general, as one varies over allw’s the corresponding i-o func-
tions net(w, .) map out a sub-manifold ofΦ having lower dimension thanΦ.
2) |W| > |X| |O|. There are an infinite number ofw’s corresponding to eachφ.
3) |W| = |X| |O|. This is the easiest case to analyze in detail. Accordingly I will deal
with it first, deferring discussion of cases (1) and (2) until later.

With some abuse of notation, let capital letters indicate random variables and lower case
letters indicate values of random variables. So for examplew is a value of the weight vector
random variableW. Use ‘p’ to indicate probability densities. So for example pΦ|T(φ | t) is
the density of the i-o function random variableΦ, conditioned on the training set random
variable T, and evaluated at the valuesΦ = φ and T = t.

In general, any i-o function not expressible as net(w, .) for somew has zero probability. For

Bayesian Backpropagation Over I-O Functions
Rather Than Weights

David H. Wolpert
The Santa Fe Institute
1660 Old Pecos Trail
Santa Fe, NM 87501

SFI TR 94-04-019

Abstract

1 INTRODUCTION

In the conventional Bayesian view of backpropagation (BP) (Buntine and Weigend, 1991;
Nowlan and Hinton, 1994; MacKay, 1992; Wolpert, 1993), one starts with the “likelihood”
conditional distribution P(training set = t | weight vectorw) and the “prior” distribution
P(w). As an example, in regression one might have a “Gaussian likelihood”, P(t |w) ∝
exp[-χ2(w, t)] ≡ Πi exp [-{net(w, tX(i)) - ty(i)}

2 / 2σ2] for some constantσ. (tX(i) and tY(i)
are the successive input and output values in the training set respectively, and net(w, .) is
the function, induced byw, taking input neuron values to output neuron values.) As another
example, the “weight decay” (Gaussian) prior is P(w) ∝ exp(-α(w2)) for some constantα.

Bayes’ theorem tells us that P(w | t)∝ P(t |w) P(w). Accordingly, the most probable weight
given the data - the “maximum a posteriori” (MAP)w - is the mode overw of P(t |w) P(w),
which equals the mode overw of the “cost function”M(w, t) ≡ ln[P(t |w)] + ln[P(w)]. So

The conventional Bayesian justification for backprop is that it finds the
MAP weight vector. As this paper shows, to find the MAP i-o function
instead, one must add a correction term to backprop. That term biases one
towards i-o functions with small description lengths, and in particular fa-
vors (some kinds of) feature-selection, pruning, and weight-sharing. This
can be viewed as ana priori argument in favor of those techniques.

An abbreviated version of this paper appeared inAdvances in Neural Information Processing
Systems 6, J. Cowan et al. (Ed.’s), Morgan Kauffman, (1994).

